Dynamic Half-Space Reporting, Geometric Optimization, and Minimum Spanning Trees

نویسندگان

  • Pankaj K. Agarwal
  • David Eppstein
  • Jirí Matousek
چکیده

We describe dynamic data structures for half-space range reporting and for maintaining the minima of a decomposable function. Using these data structures, we obtain efficient dynamic algorithms for a number of geometric problems, including closest/farthest neighbor searching, fixed dimension linear programming, bi-chromatic closest pair, diameter, and Euclidean minimum spanning tree.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Minimum Diameter Minimum Cost Spanning Tree Problem

In this paper we consider bi-criteria geometric optimization problems, in particular, the minimum diameter minimum cost spanning tree problem and the minimum radius minimum cost spanning tree problem for a set of points in the plane. The former problem is to construct a minimum diameter spanning tree among all possible minimum cost spanning trees, while the latter is to construct a minimum radi...

متن کامل

Offline Algorithms for Dynamic Minimum Spanning Tree Problems

We describe an efficient algorithm for maintaining a minimum spanning tree (MST) in a graph subject to a sequence of edge weight modifications. The sequence of minimum spanning trees is computed offline, after the sequence of modifications is known. The algorithm performs O(log n) work per modification, where n is the number of vertices in the graph. We use our techniques to solve the offline g...

متن کامل

Geometric Minimum Spanning Trees

Let S be a set of n points in < d. We present an algorithm that uses the well-separated pair decomposition and computes the minimum spanning tree of S under any Lp or polyhedral metric. It has an expected running time of O(n logn) for uniform distributions. Experimentalresults show that this approachis practical. Under a variety of input distributions, the resultingimplementation is robust and ...

متن کامل

Implementations of Dynamic Tree Collections Based on Splay Trees

We describe implementations of two closely related variants of dynamic rooted trees. These variants are similar to Sleator and Tarjan's dynamic trees, but instead of the operation of nding the minimum key on the path from a given node to the root, we have the operation of nding the minimum key in the subtree of a given node (the rst variant) and the operation of nding a xed key value in the sub...

متن کامل

Solving minimal, wellconstrained, 3D geometric constraint systems: combinatorial optimization of algebraic complexity

Many geometric constraint solvers use a combinatorial or graph algorithm to generate a decompositionrecombination (DR) plan. A DR plan recursively decomposes the system of polynomial equations into small, generically rigid subsystems that are more likely to be successfully solved by algebraic-numeric solvers. In this paper we show that, especially for 3D geometric constraint systems, a further ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1992